科学技术创新2024,Issue(20) :56-59.

基于机器学习的行道树落叶指数助力城市环境保障的研究

Research on the Help of Roadside Tree Defoliation Index to Urban Environmental Protection Based on Machine Learning

范翠英
科学技术创新2024,Issue(20) :56-59.

基于机器学习的行道树落叶指数助力城市环境保障的研究

Research on the Help of Roadside Tree Defoliation Index to Urban Environmental Protection Based on Machine Learning

范翠英1
扫码查看

作者信息

  • 1. 上海静安城市发展(集团)有限公司,上海
  • 折叠

摘要

党的十九大以来,习总书记强调超大城市的发展要更多运用新一代信息技术手段,提高城市科学化、精细化、智能化管理水平.二十大报告中,再次提出建设数字中国,提高城市治理水平,实现城市数字化转型.以上海静安城市发展(集团)有限公司自主研发的"落叶指数"为例,依托机器学习算法技术,研究行道树脱落的影响因子,通过构建预测模型精准预测落叶信息,使得道路保洁排班、调配更加科学,实现管理方式向数据管理转变、向定量管理转变、向精细化管理转变.

Abstract

Since the 19th CPC National Congress,General Secretary Xi has emphasized that the development of megacities should make more use of the new generation of information technology,and improve the level of scientific,refined and intelligent management of cities.In the report of the 20th CPC National Congress,it is once again proposed to build Digital China,improve the level of urban governance,and realize the digital transformation of cities.This paper takes the"Deciduous Leaf Index"independently developed by Shanghai Jing'an Urban Development(Group)Co.,Ltd.as an example.Relying on machine learning algorithm technology,the paper studies the influencing factors of roadside tree shedding.By building a prediction model,the paper accurately predicts the information of deciduous leaves,so as to make the road cleaning scheduling and deployment more scientific,and realize the transformation of management mode to data management,quantitative management and refined management.

关键词

数字中国/城市治理/数字化转型/行道树/落叶指数

Key words

Digital China/urban governance/digital transformation/roadside tree/defoliation index

引用本文复制引用

出版年

2024
科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
段落导航相关论文