首页|基于多要素钻进信息的围岩分级方法研究

基于多要素钻进信息的围岩分级方法研究

扫码查看
本研究以交通部科技示范项目"三峡库区奉建高速公路"为背景,开展基于随钻参数的围岩智能分级方法研究,取得以下主要成果:(1)通过现场试验共收集1 000个围岩分级指标,建立了围岩智能分级数据样本库;(2)建立了基于SVR与PSO-BP算法的围岩分级指标预测模型,使用样本库训练并实现了基于随钻参数的围岩智能分级;(3)模型预测结果显示,PSO-BP模型的预测值在真实值拟合参考线上的偏离程度小于SVR模型,尤其是在最大误差方面,PSO-BP模型表现出更小的偏离,显示出更高的拟合精度,尤其在预测完整性系数时,PSO-BP模型预测精度更高.
Research on Surrounding Rock Classification Method Based on Multi-factor Drilling Information
Based on the scientific and technological demonstration project of the Ministry of Communications'Fengjian Expressway in the Three Gorges Reservoir Area',this study carried out research on the intelligent classification method of surrounding rock based on drilling parameters,and achieved the following main results:(1)A total of 1,000 surrounding rock classification indicators were collected through field tests,and a sample database of intelligent classification data of surrounding rock was established.(2)The prediction model of surrounding rock classification index based on SVR and PSO-BP algorithm is established,and the intelligent classification of surrounding rock based on drilling parameters is trained and realized by using the sample library.(3)The model prediction results show that the deviation of the predicted value of the PSO-BP model on the true value fitting reference line is smaller than that of the SVR model.Especially in terms of the maximum error,the PSO-BP model shows a smaller deviation and shows higher fitting accuracy.Especially when predicting the integrity coefficient,the PSO-BP model has higher prediction accuracy.

measurement while drillingintelligent algorithmsurrounding rock classification

吴俊

展开 >

重庆交通大学,重庆

随钻测量 智能算法 围岩分级

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(20)