首页|一种基于预测用户动态偏好的推荐框架研究

一种基于预测用户动态偏好的推荐框架研究

扫码查看
时间数据容易获取且存在于各种应用程序中,然而大多数推荐方法未考虑用户的动态偏好变化,导致推荐内容过时且缺乏个性化,面临降低用户体验和信息过载等挑战.为了解决这些问题,本研究基于用户的历史购买序列数据,提出了一种基于预测用户动态偏好的推荐框架(PUDP).该框架由三个阶段组成:利用矩阵分解和购买时间序列数据获取用户特征;使用卡尔曼滤波从用户特征中预测用户偏好向量;根据预测的偏好向量,提出了两种推荐序列计算方法,为用户生成推荐列表.实验结果表明,在真实的Last.fm数据集上,该方法在推荐预测性能方面优于一阶马尔可夫模型等竞争方法.
A Recommendation Framework Based on Predicting User Dynamic Preferences
Time data is easily accessible and present in various applications.However,most recommenda-tion methods fail to consider the dynamic changes in user preferences,leading to outdated and impersonalized recommendations,resulting in challenges such as decreased user experience and information overload.To address these issues,this study proposes a recommendation framework based on Predicting User Dynamic Preferences(PUDP)using historical purchase sequence data.The framework consists of three stages:first,user features are obtained using matrix factorization and purchase time series data;next,the Kalman filter is employed to predict user preference vectors from these features;finally,two recommendation sequence calculation methods are proposed based on the predicted preference vectors to generate recommendation lists for users.Experimental results demonstrate that,on a real-world Last.fm dataset,this method outperforms competing methods such as the first-order Markov model in recommendation prediction performance.

matrix factorizationtime-aware recommendationkalman filterrecommendation system

蔡深帆

展开 >

广东理工学院,广东肇庆

矩阵分解 时间感知推荐 卡尔曼滤波器 推荐系统

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(20)