首页|基于人工智能算法的电动汽车锂离子动力电池SOC与SOH估计技术

基于人工智能算法的电动汽车锂离子动力电池SOC与SOH估计技术

扫码查看
本文基于人工智能算法构建了长短期记忆网络模型,并探究不同条件下该模型对锂离子动力电池SOC和SOH的估计精度.在动力电池SOC估计中,增加隐藏层数目和隐藏层上神经元数量,可以提高模型对电池SOC的估计精度.在隐藏层为2层、神经元为100个时,该模型对电池SOC的估计值和实测值十分接近,RMSE误差仅为1.1%,ME值为2.4%.在动力电池SOH估计中,使用相同的长短期记忆网络模型进行SOH估计,结果表明RMSE值为0.85%,ME值为1.02%.由此可得,使用基于人工神经网络的长短期记忆网络模型估计动力电池SOC与SOH,可以满足精度要求.
SOC and SOH Estimation Technology for Lithium-ion Power Batteries in Electric Vehicles Based on Artificial Intelligence Algorithms
This article constructs a long short-term memory network model based on artificial intelligence algorithms and explores the estimation accuracy of the model for the SOC and SOH of lithium-ion power batteries under different conditions.In SOC estimation of power batteries,increasing the number of hidden layers and neurons on the hidden layers can improve the accuracy of the model in estimating battery SOC.When the hidden layer is 2 layers and there are 100 neurons,the model's estimated and measured values of battery SOC are very close,with an RMSE error of only 1.1%and a ME value of 2.4%.In the estimation of power battery SOH,the same long short-term memory network model was used for SOH estimation,and the results showed that the RMSE value was 0.85%and the ME value was 1.02%.It can be concluded that using an artificial neural network-based long short-term memory network model to estimate the SOC and SOH of power batteries can meet the accuracy requirements.

artificial intelligence algorithmslithium ion power batteriesSOCSOHelectric vehicle

徐佐禹

展开 >

青岛工学院,山东青岛

人工智能算法 锂离子动力电池 SOC SOH 电动汽车

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(21)