首页|基于特征选择的养殖行业异常用电行为检测

基于特征选择的养殖行业异常用电行为检测

扫码查看
随着智能电网和物联网技术的发展,异常用电行为检测变得尤为重要。本文提出了一种基于TOPSIS特征选择的异常用电行为检测方法。利用养殖行业用户用电数据计算各特征与理想点和负理想点的相对接近度,对特征进行排序并选取最具代表性的特征。实验结果表明,该方法能够有效提升异常检测模型的性能,具有较高的准确性和可靠性,为养殖行业的用电安全管理提供了有力支持。
Detection of Abnormal Electricity Consumption Behavior in the Aquaculture Industry Based on Feature Selection
With the development of smart grid and Internet of Things technology,abnormal electricity consumption behavior detection has become particularly important.This paper proposes an abnormal electricity consumption behavior detection method based on TOPSIS feature selection.By using electricity consumption data from users in the aquaculture industry to calculate the relative closeness between each feature and the ideal point and negative ideal point,the features are sorted and the most representative features are selected.The experimental results show that this method can effectively improve the performance of the anomaly de-tection model,with high accuracy and reliability,providing strong support for electricity safety management in the aquaculture industry.

TOPSISfeature selectionabnormal electricity usage behavior detectionbreeding industry

孙耀、易校石

展开 >

伊犁师范大学,新疆伊宁

TOPSIS 特征选择 异常用电行为检测 养殖行业

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(24)