首页|基于图形复杂度的空间矢量数据划分和索引技术

基于图形复杂度的空间矢量数据划分和索引技术

扫码查看
矢量空间数据的划分存在计算性能及跨区域的问题.基于空间位置的划分虽可满足空间索引和快速查询的需求,但难以实现并行空间分析的计算负载均衡.本文提出了一种基于图形复杂度的空间矢量数据划分和索引技术,该技术基于图形复杂度,结合Hilbert空间填充曲线进行矢量数据划分,并采用R树建立分布式索引,不仅提升了数据访问速度,还解决了数据倾斜导致的计算失衡问题,为矢量空间计算任务的负载均衡提供了更优支持.
Space Vector Data Partition and Indexing Technology Based on Graph Complexity
The partitioning of vector space data has computational performance and cross regional issues.Although partitioning based on spatial location can meet the needs of spatial indexing and fast querying,it is difficult to achieve computational load balancing for parallel spatial analysis.This article proposes a space vector data partitioning and indexing technique based on graph complexity.This technique combines graph complexity with Hilbert space filling curves for vector data partitioning,and uses R-trees to establish distributed indexes.It not only improves data access speed,but also solves the problem of computational imbalance caused by data skewing,providing better support for load balancing of vector space computing tasks.

vector dataHilbert curvedistributed indexgraph complexity

冯霞

展开 >

杭州职业技术学院,浙江杭州

矢量数据 Hilbert曲线 分布式索引 图形复杂度

2024

科学技术创新
黑龙江省科普事业中心

科学技术创新

影响因子:0.842
ISSN:1673-1328
年,卷(期):2024.(24)