首页|基于改进遗传算法的末端共同配送车辆路径优化

基于改进遗传算法的末端共同配送车辆路径优化

扫码查看
为解决共同配送路径优化问题,提出一个具有可操作性的共同配送策略,基于此构建了以考虑车辆使用成本、车辆行驶成本和碳排放成本最小化为目标的共同配送车辆路径模型,用K-means聚类方法对客户节点进行分区聚类,确定各末端配送网点所服务的客户,并在此基础上利用基于节约里程算法的遗传算法对该模型进行求解。通过利用公共数据集实验验证设计的CW-GA算法的优越性,发现相较于传统GA,本文算法具有良好的求解性能。利用本文算法仿真分析共同配送前后相关成本的变化以及不同配送模式下的燃料消耗、行驶距离变化,结果表明共同配送能够有效降低物流总成本。
Research on optimization of vehicle path for end of terminal joint delivery based on improved genetic algorithm
In order to solve the joint distribution routing optimization problem,an operational joint distribution strategy was proposed.Based on this,a joint distribution vehicle routing model with the goal of minimizing the vehicle use cost,vehicle running cost and carbon emission cost was constructed.On the basis of determining the customers served by each terminal distribution network,the genetic algorithm based on saving history algorithm was used to solve the model.By using the public data set to verify the superiority of the designed CW-GA algorithm,it was found that the designed algorithm has good solution performance compared with the traditional GA.The proposed algorithm was used to simulate and analyze the changes of related costs before and after joint distribution,as well as the changes of fuel consumption and driving distance under different distribution modes.The results showed that joint distribution can effectively reduce the total logistics cost.

joint deliveryend logisticsvehicle routing problemgenetic algorithmK-means clustering

彭会萍、李士伟、孙宏进、曹晓军

展开 >

兰州财经大学丝绸之路经济研究院,兰州 730020

共同配送 末端物流 车辆路径问题 遗传算法 K-means聚类

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(1)
  • 16