哈尔滨商业大学学报(自然科学版)2024,Vol.40Issue(2) :179-185.

基于蝙蝠优化算法的电力系统经济调度

Economic dispatch of power system based on bat optimization algorithm

朱宗玖 刘俊家
哈尔滨商业大学学报(自然科学版)2024,Vol.40Issue(2) :179-185.

基于蝙蝠优化算法的电力系统经济调度

Economic dispatch of power system based on bat optimization algorithm

朱宗玖 1刘俊家1
扫码查看

作者信息

  • 1. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001
  • 折叠

摘要

针对电力系统的优化调度问题,提出基于蝙蝠优化算法的运行策略,旨在降低发电机组的总燃料成本和减少污染物排放量.然而由于约束条件的复杂性,一般的数学方法难以解决这个难题.采用优化过的蝙蝠算法(NBA)来解决电力系统动态经济调度问题,为了验证优化过的NBA算法的性能,对一个含有 6 台火电机组的电力系统进行优化调度,并在Matlab软件中对模型进行了仿真和测试.以运行成本最小为目标函数,约束条件包含功率平衡约束、火电机组最大最小出力约束、火电机组爬坡约束、网络潮流约束等,然后使用NBA算法完成对电力系统优化调度决策任务,结果表明,优化过后的算法减少污染的同时降低了发电成本,提升了电力系统的效益.

Abstract

In view of the optimization and scheduling of the power system,an operation strategy based on the bat optimization algorithm was proposed,aiming to reduce the total fuel cost of the generator set and reduce the emission of pollutants.However,due to the complexity of constraints,general mathematical methods are difficult to solve this problem.Therefore,this paper adopted the optimized bat algorithm(NBA)to solve the problem of dynamic economic scheduling of the power system.In order to verify the performance of the optimized NBA algorithm,this paper optimized the scheduling of a power system containing 6 thermal power units,and simulates and tests the model in Matlab software.Taking the minimum operating cost as the target function,the constraint conditions include power balance constraint,maximum and minimum output constraint of thermal power unit,thermal power unit climbing constraint,network trend constraint,etc.,used the NBA algorithm to complete the optimization and scheduling decision-making task of the power system.The result showed that the optimized algorithm reduced pollution.At the same time,it reduced the cost of power generation and improved the benefits of normal power generation in the power system.

关键词

电力系统/蝙蝠算法/优化调度/火电机组/运行成本

Key words

power system/bat algorithm/optimized scheduling/thermal power unit/operating cost

引用本文复制引用

基金项目

安徽省自然科学基金(1808085MF169)

安徽高校自然科学研究项目(KJ2018A0086)

出版年

2024
哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
被引量1
参考文献量16
段落导航相关论文