首页|带有校正项的自适应梯度下降优化算法

带有校正项的自适应梯度下降优化算法

扫码查看
基于批处理的随机梯度下降(SGD)优化算法通常用于训练卷积神经网络(CNNs),其性能的优劣直接影响神经网络收敛的速度。近年来,一些自适应梯度下降优化算法被提出,如Adam、Radam算法等。然而,这些优化算法既没有利用历史迭代的梯度范数,也没有利用随机子样本中梯度的二阶矩,这些导致自适应梯度下降优化算法收敛速度较慢,性能也不稳定。结合历史梯度范数和梯度的二阶矩,提出了一种新的自适应梯度下降优化算法normEve。通过模拟仿真实验,实验结果表明,提出的新算法在结合历史梯度范数和梯度二阶矩的情形下能有效地提高算法的收敛速度。通过实例验证新算法与Adam优化算法比较,新算法的测试准确率大于Adam优化算法,验证了新算法的优越性。
Adaptive gradient descent optimization algorithm with correction term
The batch stochastic gradient descent(SGD)optimization algorithm was commonly used for training convolutional neural networks(CNNs),and its performance directly affected the convergence speed of the neural network.In recent years,some adaptive gradient descent optimization algorithms had been proposed,such as the Adam algorithm and Radam algorithm.However,these optimization algorithms neither utilized the gradient norms of historical iterations nor utilize the second moment of gradients in random subsample.These factors led to slow convergence speed and unstable performance of adaptive gradient descent optimization algorithms.In this paper,a new adaptive gradient descent optimization algorithm called normEve was proposed that combined historical gradient norms and second moment of gradients.Through simulation experiments,the results showed that the new algorithm can effectively improve the convergence speed when historical gradient norms and second moment of gradients were combined.Through test of the new algorithm compared with the Adam optimization algorithm,the accuracy of the new algorithm was higher than that of Adam optimization algorithm,which validated its practical applicability.

gradient descentneural networksgradient normadaptive learning rateclassificationoptimization algorithm

黄建勇、周跃进

展开 >

安徽理工大学 数学与大数据学院,安徽 淮南 232001

梯度下降 神经网络 梯度范数 自适应学习率 分类 优化算法

深部煤矿采动响应与灾害防控国家重点实验室基金资助项目

SKLMRDPC22KF03

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(2)
  • 15