首页|基于多视图Transformer的下一个事件预测

基于多视图Transformer的下一个事件预测

扫码查看
预测性业务流程监控依赖存储在事件日志中的历史数据预测当前执行流程的未来趋势.现有的基于深度学习的方法往往只考虑事件的活动和时间戳,忽略了事件的其他属性,导致预测下一个事件不够准确.针对此问题,提出一种基于多视图的Trans-former模型进行预测,旨在提高对下一个事件的预测准确性.该模型基于事件日志中记录的各种事件信息,融合了自注意机制来建立事件序列和相应输出之间的复杂依赖关系,更全面地利用事件日志的信息.在4 个真实生活事件数据集上的实验结果表明,所提出的方法在一定程度上提高了预测下一个事件任务的准确性,更准确地预测了未来业务流程中的事件.
Next event prediction based on multiview Transformer
Predictive business process monitoring relied on historical data stored in event logs to predict future trends in currently executing processes.Existing methods based on deep learning often only considered the activity and timestamp of the event,ignoring other attributes of the event,resulting in inaccurate prediction of the next event.To address this problem,a multi-view Transformer model was proposed for prediction,aiming to improve the prediction accuracy of the next event.This model was based on various event information recorded in event logs and incorporates a self-attention mechanism to establish complex dependencies between event sequences and corresponding outputs,making more comprehensive use of information in the event log.The experimental results on 4 real-life event datasets showed that the proposed method improved the accuracy of the task of predicting the next event to a certain extent and more accurately predicts events in future business processes.

business processdeep learningpredictive business process monitoringself-attention mechanismmulti-viewTransformer

刘富豪、卢可

展开 >

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

安徽理工大学 数学与大数据学院,安徽 淮南 232001

业务流程 深度学习 预测性业务流程监控 自注意机制 多视图 Transformer

国家自然科学基金项目安徽省重点研究与开发计划项目安徽省自然科学基金-水科学联合基金

614020112022a050200052308085US11

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(4)