首页|马尔科夫切换下一类随机延迟微分方程的平稳分布

马尔科夫切换下一类随机延迟微分方程的平稳分布

扫码查看
在随机分析问题中,诸多算法都是建立在随机系统平稳分布的存在唯一性的基础上。研究希尔伯特空间上马尔科夫切换下一类随机延迟微分方程平稳分布的存在唯一性。考虑所研究方程相应的确定性方程的基本解,并利用常数变易公式将解进行表示。利用弱收敛方法和马尔科夫链的性质给出所需假设,以此建立马尔科夫切换下平稳分布存在的条件。在假设基础上,通过伊藤等距公式,Gronwall引理和基本解的指数稳定性,给出了该随机延迟微分方程平稳分布存在唯一性的充分条件,并予以严格证明。结论改进和推广了已有文献的相关结果。
Stationary distributions of a class of stochastic delay differential equations with Markovian switching
In stochastic analysis problems,many algorithms were based on the existence and uniqueness of the stationary distribution of stochastic systems.In this paper,the existence and uniqueness of stationary distributions for a class of stochastic delay differential equations with Markovian switching in Hilbert space was studied.The fundamental solutions of the corresponding deterministic equations of the studied equations were considered,and the solutions were expressed by using the constant variability formula.The assumptions required were given by using the weak convergence method and the properties of Markov chains,and the conditions for the existence of stationary distributions under Markov switching were established.Based on the assumptions,by means of Ito isometry formula,Gronwall lemma and exponential stability of the fundamental solution,the sufficient conditions for the existence and uniqueness of the stationary distribution of the stochastic delay differential equation were given and strictly proved.Conclusion improved and generalized the related results in the literature.

Markov switchstochastic delay differential equationstationary distributionfundamental solutionGronwall lemmaIto formula

顾利倩、王伟

展开 >

天津师范大学 数学科学学院,天津 300387

马尔科夫切换 随机延迟微分方程 平稳分布 基本解 Gronwall引理 伊藤公式

国家自然科学基金

11401436

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(4)