首页|二阶次指数分布卷积与卷积根的封闭性

二阶次指数分布卷积与卷积根的封闭性

扫码查看
次指数分布作为一类重要的重尾分布,由于其能刻画大额理赔,在金融与精算领域有着广泛的应用.随着风险模型研究的进一步深入,2008 年二阶次指数分布被首次提出,相对于一阶次指数分布,其渐近表达式更加精确,因而有关二阶次指数分布的研究近年来受到广泛关注.对于二阶次指数分布卷积与卷积根封闭性问题,给出了二阶次指数分布在成比例等价下关于二阶次指数分布族封闭,进而得到二阶次指数分布具有卷积封闭性,得到了二阶次指数分布关于卷积根封闭性的结论,拓展了二阶次指数分布的研究成果,对未来相关研究具有重要的理论意义.
Closure properties of convolution and convolution roots of second-order subexponential distribution
As an important heavy tail distribution,subexponential distribution was widely used in finance and actuarial fields because of its ability to describe large claims.With the further development of risk model research,the second-order subexponential distribution was firstly proposed in 2008.Compared with the first-order subexponential distribution,its asymptotic expression was more accurate,so the research on the second-order subexponential distribution had attracted extensive attention in recent years.In this paper,the closure of the convolution and the convolution roots of second-order subexponential distribution were considered.First,the closure of second-order subexponential distribution on the family of second-order subexponential distribution under proportional equivalence was given,and then the convolution closure of second-order subexponential distribution was obtained.Finally,the conclusion about the closure of convolution roots was obtained.This paper expanded the research results of second-order subexponential distribution,which had important theoretical significance for future related research.

second-order subexponential distributionconvolutionconvolution rootclosure propertyheavytaileddistributionactuarial studies

陆爻

展开 >

安徽大学 大数据与统计学院,合肥 230601

二阶次指数分布 卷积 卷积根 封闭性 重尾分布 精算研究

安徽省高等学校自然科学研究基金资助项目

KJ2021A0060

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(4)