具有新四阶项的非线性微分方程的精确解
Exact solutions of nonlinear differential equations with new fourth-order terms
张丽琴 1郑艳红 2林冠军1
作者信息
- 1. 泉州师范学院 数学与计算机科学学院,福建 泉州 352000
- 2. 福建师范大学 数学与统计学院,福州 350007
- 折叠
摘要
研究了一类具有新的四阶项D2xD2T非线性偏微分方程的问题,其中三个新的四阶导数项和一些二阶导数项增加了非线性方程求解的困难.构造非线性偏微分方程的Hirota双线性形式,利用Hirota双线性方法得到方程的Lump解.通过绘图分析了它们的动力学行为.
Abstract
A nonlinear PDE combining with a new fourth-order term D2xD2T was studied.Adding three new fourth-order derivative terms and some second-order derivative terms,it increased difficulty in solving.This paper formulated a combined fourth-order nonlinear partial differential equation,which possesses a Hirota's bilinear form.The class of lump solutions were constructed explicitly through the Hirota's bilinear method.The dynamical behaviors were analyzed through plots.
关键词
Hirota双线性形式/可积方程/Lump解/符号计算Key words
Hirota's bilinear form/integrable equation/Lump solution/symbolic computation引用本文复制引用
出版年
2024