首页|基于BP神经网络的空中交通管制员疲劳风险研究

基于BP神经网络的空中交通管制员疲劳风险研究

扫码查看
为有效识别、防控管制员疲劳风险,突破以往疲劳风险识别与评估方法中的模糊性,尝试结合管制工作特点设计可量化的方法,以对管制员疲劳风险的管理提供更加精确客观可靠的评价.构建影响管制员疲劳风险程度的评估指标体系,对管制员疲劳风险程度进行等级划分;选择了适宜作为管制员疲劳风险等级评估方法的BP神经网络模型对管制员疲劳风险等级进行可量化的评估,设计管制员疲劳风险等级评估调查问卷,在国内某塔台范围内展开问卷调查,分析归纳问卷数据,选择并运用数据训练验证了BP神经网络模型,得到了相应的参数和结果,与管制员疲劳的主观自评疲劳估值项比较,定量验证了模型的准确性.
Research on fatigue risk of air traffic controllers based on BP neural network
In order to more effectively identify and mitigate fatigue risks among controllers,this paper sought to break through the ambiguity inherent in previous fatigue risk identification and assessment methods.By incorporating the unique characteristics of control work,a quantifiable methodology was devised to provide a more accurate,objective,and reliable assessment of controller fatigue risk management.An evaluation index system was constructed in the past to measure the level of fatigue risk among controllers,categorizing it into distinct levels.Subsequently,the BP neural network model,deemed suitable for assessing controller fatigue risk levels,was selected and employed to conduct a quantitative assessment of fatigue risk levels among controllers in the past.To analyze data,a questionnaire was designed specifically to assess controller fatigue risk levels and administered within the scope of the XX tower platform.Following the analysis and summarization of the questionnaire responses,the BP neural network model was trained and validated using the data,yielding optimal parameters and results.The accuracy of the model was verified by comparing its output with the controllers′subjective,self-assessed fatigue levels from the past.This comparison demonstrated the reliability of the model in accurately assessing controller fatigue risk.

air transportationcontroller fatiguemachine learningsafetyriskrisk management

宁北杰、江斌、丁继婷、许辰澄

展开 >

中国民用航空华东地区空中交通管理局,上海 200335

南京航空航天大学 民航学院,南京 211106

空中交通运输 管制疲劳 机器学习 安全 风险 风险管理

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(5)