首页|基于残差高斯变分自编码器的空气质量预测

基于残差高斯变分自编码器的空气质量预测

扫码查看
为提高多变量空气污染预测的准确性,提出了一种残差高斯混合嵌套因子变分自编码器(Residual Gaussian-mixture nested factorial variationalautoencoder,RNF-VAE)模型。该模型基于安徽淮南6个监测站点的空气污染数据进行实验,并通过三种统计指标评估其性能。构建RNF-VAE以处理多元空气污染数据,并与长短期记忆网络(LSTM)、门控循环单元(GRU)、双向LSTM(BiLSTM)和双向GRU(BiGRU)等主流模型进行比较。结果表明,RNF-VAE在6种污染物的预测中表现优异,RMSE降低35。12%,MAE减少29。12%,R2提升11。17%。结果显示,RNF-VAE在空气污染预测中具有更高的准确性和可靠性,能够有效应对多元空气污染的复杂性和数据不确定性,为政策制定和环境管理提供了有价值的参考。
Air quality prediction based on residual Gaussian variational autoencoder
To enhance the accuracy of multivariate air pollution prediction,a Residual Gaussian-mixture Nested Factorial Variational Autoencoder(RNF-VAE)model was proposed.The model was evaluated using air pollution data from six monitoring stations in Huainan,Anhui,with performance assessed through three statistical metrics.The methodology involved constructing the RNF-VAE to handle multivariate air pollution data and comparing its performance with mainstream models,including Long Short-Term Memory(LSTM),Gated Recurrent Unit(GRU),Bidirectional LSTM(BiLSTM),and Bidirectional GRU(BiGRU).Results demonstrated that the RNF-VAE performed excellently in predicting six pollutants,achieving 35.12%reduction in RMSE,29.12%decrease in MAE,and 11.17%increase in R2.These findings indicated that the RNF-VAE provided higher accuracy and reliability in air pollution prediction,effectively addressing the complexity and data uncertainty in multivariate air pollution,thus offering valuable insights for policy formulation and environmental management.

air pollutantdeep learningresidual learningvariational autoencodermachine learning

胡毅、唐超礼

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232001

安徽理工大学电气与信息工程学院,安徽淮南 232001

空气污染 深度学习 残差学习 变分自编码器 机器学习

2024

哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
年,卷(期):2024.40(6)