哈尔滨商业大学学报(自然科学版)2024,Vol.40Issue(6) :702-709.

Riesz空间分数阶扩散方程的快速预处理方法

Fast preconditioning method for Riesz space-fractional diffusion equations

黄小青 张建华
哈尔滨商业大学学报(自然科学版)2024,Vol.40Issue(6) :702-709.

Riesz空间分数阶扩散方程的快速预处理方法

Fast preconditioning method for Riesz space-fractional diffusion equations

黄小青 1张建华1
扫码查看

作者信息

  • 1. 东华理工大学理学院,南昌 330000
  • 折叠

摘要

空间分数阶微分方程的数值求解是科学与工程计算研究领域的热点问题.针对Crank-Nicolson格式和四阶有限中心差分离散Riesz空间分数阶扩散方程导出的非对称all-at-once线性方程组,构造了 τ矩阵块α循环预处理子.理论分析证明预处理后的系数矩阵可分解为单位矩阵与一个低秩矩阵和小范数矩阵的和.数值实验结果证实了 T矩阵块α循环预处理广义最小残差法求解非对称all-at-once线性方程组的有效性.

Abstract

The numerical solution of space-fractional differential equations is a hot issue in the field of science and engineering computing in recent years.In this paper,based on theτ-matrix and block α-circulant matrix,a new preconditioner for solving nonsymmetric all-at-once linear systems arising from the Riesz space-fractional diffusion equation which was discreted by Crank-Nicol son and fourth-order finite difference scheme was presented.Theoretical analysis showed that the preconditioned coefficient matrix can be decomposed into the sum of the unit matrix,a low rank matrix and a small norm matrix.Finally,numerical results confirm the effectiveness of the τ-matrix and block α-eirculant preconditioned GMRES method for solving the nonsymmetric all-at-once linear system.

关键词

Riesz空间分数阶扩散方程/all-at-once线性方程组/Crank-Nicolson格式/四阶有限中心差分法/τ预处理/广义最小残差法

Key words

Riesz space-fractional diffusion equation/all-at-once linear system/Crank-Nicolson formula/fourth-order finite central difference method/τ-matrix preconditioner/Generalized minimum residual method

引用本文复制引用

出版年

2024
哈尔滨商业大学学报(自然科学版)
哈尔滨商业大学

哈尔滨商业大学学报(自然科学版)

影响因子:0.405
ISSN:1672-0946
段落导航相关论文