首页|基于LMI和BP网络的非线性矩阵加权次优融合算法

基于LMI和BP网络的非线性矩阵加权次优融合算法

扫码查看
为了解决互协方差未知的多传感器非线性系统融合估计问题,提出了一种改进的矩阵加权次优融合算法.利用舒尔补定理推导出线性最小方差意义下基于矩阵融合的最简约束条件.此约束条件可保证融合估计误差方差的正定性,以及所提出次优融合估计的一致性;基于线性矩阵不等式(LMI)提出了一种矩阵加权次优融合估计.考虑到LMI算法优化过程中存在的耗时问题,采用BP网络获取最优值;结合容积卡尔曼滤波算法(CKF),提出了基于LMI算法和BP网络的非线性矩阵加权次优融合算法.仿真分析结果证明了算法应用于非线性系统的有效性.
A nonlinear suboptimal fusion algorithm weighted by matrices based on LMI and BP networks
In order to solve the fusion estimation problem for multi-sensor nonlinear systems with unknown cross-covariance,an improved suboptimal fusion algorithm weighted by matrices is proposed.Under the sense of linear minimum variance,the simplest constraints based on fusion weighted by matrices are derived by Shure complement theorem.These constraints can ensure the positive definiteness of the fusion estimation error variance,and the consistency of the proposed suboptimal fusion estimation.Further,a suboptimal fusion estimation weighted by matrices is proposed based on linear matrix inequality(LMI).Considering the time-consuming problem in the optimization process of LMI algorithm,the optimal value is obtained by the BP networks.A nonlinear suboptimal fusion algorithm weighted by matrices based on LMI and BP networks is proposed in combination with the Cubature Kalman filter algorithm(CKF).Simulation analyses verify the effectiveness of the algorithm applied to nonlinear systems.

suboptimal fusion algorithm weighted by matriceslinear matrix inequalityBP networkscubature Kalman filter

郭航延、郝钢

展开 >

黑龙江大学 电子工程学院,哈尔滨 150080

矩阵加权次优融合 线性矩阵不等式 BP网络 容积卡尔曼滤波器

国家自然科学基金

61503127

2024

黑龙江大学工程学报
黑龙江大学

黑龙江大学工程学报

影响因子:0.358
ISSN:2095-008X
年,卷(期):2024.15(2)
  • 25