Chaotic oscillator in frequency domain with fiber Fabry-Perot interferometer
Chaos is a type of motion unique to nonlinear dynamical systems,characterized by extreme sensitivity to initial conditions and the randomness,which makes it potentially useful for secure communication.Chaos research require a easily controllable chaotic oscillator.Chaotic behavior in optical bistability provides a simple theoretical model.Based on the theoretical model,a novel chaotic oscillator in frequency domain is proposed.The chaotic oscillator is composed of a tunable fiber laser,fiber Fabry-Perot interferometer(FFPI)and hybrid delayed feedback loop.The laser itself plays a part in delay time which is induced by PZT device.The chaotic oscillator is realized by experiments and chaos behaviors are observed.The chaos oscillator has the characteristic of simplicity and flexibility.It have potential application value in the field of fiber optical communication encryption.
tunable fiber laserfiber Fabry-Perot interferometerdelayed feedbackchaotic oscillator in frequency domain