首页|基于自适应VMD与IAO-SVM的滚动轴承故障诊断

基于自适应VMD与IAO-SVM的滚动轴承故障诊断

扫码查看
针对在滚动轴承故障诊断中应用支持向量机(Support vector machine,SVM)时遇到的参数敏感性问题和特征选择的冗余问题,提出了一种新的优化策略.通过自适应变分模态分解(Variational mode decomposition,VMD)技术结合排列熵方法,对滚动轴承的故障特征向量进行提取,成功获取了反映轴承健康状况的关键特征;为了提高SVM的性能,采用了一种改进的天鹰优化器(Improved aquila optimizer,AO)算法,该算法整合了 Logistic映射、精英反向学习策略及DOA算法的生存率策略,形成了多策略改进型天鹰优化器.通过这种方法对SVM的参数进行了精细调优;在凯斯西储大学的轴承数据集上的实验结果显示,该方法的故障识别率高达99.17%,相较于传统SVM及AO-SVM方法,准确度分别提高了 5%和0.8%.这一成果不仅展示了该优化策略的有效性,也为滚动轴承故障诊断提供了一种更为可靠的技术途径.
Rolling bearing fault diagnosis based on adaptive VMD and IAO-SVM
A new optimization strategy addressing the issues of parameter sensitivity and redundancy in feature selection encountered is proposed,when applying Support Vector Machines(SVM)for rolling bearing fault diagnosis.By integrating Adaptive Variational Mode Decomposition(IVMD)with the PE method,the fault feature vectors of rolling bearings are extracted,successfully capturing key indicators of bearing health.To enhance the performance of SVM,an improved Aquila Optimizer(IAO)algorithm was utilized,which incorporates Logistic mapping,elite reverse learning strategies,and survival rate strategies from the DOA algorithm,forming a multi-strategy IAO.This method was used to finely tune the parameters of SVM.The experimental results on the Case Western Reserve University bearing dataset show that the fault detection rate of this method reached 99.17%,which is an improvement of 5%and 0.8%over the traditional SVM and AO-SVM methods,respectively.These achievements not only demonstrate the effectiveness of the optimization strategy but also provide a more reliable technical approach for diagnosing faults in rolling bearings.

fault diagnosisvariational mode decompositioncomposite evaluation indicesaquila optimizersupport vector machine

蔡铮印、鹿雷、丛屾

展开 >

黑龙江大学电子工程学院,哈尔滨 150080

黑龙江大学机电工程学院,哈尔滨 150080

故障诊断 变分模态分解 综合评价指标 天鹰优化器 支持向量机

2024

黑龙江大学工程学报
黑龙江大学

黑龙江大学工程学报

影响因子:0.358
ISSN:2095-008X
年,卷(期):2024.15(4)