首页|基于关节特征增强图卷积的动作识别算法

基于关节特征增强图卷积的动作识别算法

扫码查看
近年来,人体动作识别在智能安防与监控、医疗康复、智能家居等领域应用广泛,是计算机视觉领域的热点研究问题.目前常见的方法将骨骼数据和RGB视频数据进行特征提取之后进行融合.但是这些方法未能考虑RGB特征和骨骼数据的之间的联系,在某些相似场景环境下效果不佳.因此,提出了一种基于关节特征增强图卷积网络(Joint features enhanced graph convolutional network,JFE-GCN)的动作识别方法.通过关节特征提取模块(Joint feature extraction module,JFEM)对RGB视频进行处理,获取包含人体的所有运动细节;通过基于关节特征增强的图卷积模块(Joint feature-enhanced graph convolutional module,JFE-GC),提取RGB视频中人体关节点附近的局部运动信息作为关节特征,建立关节区域特征和骨骼特征之间的联系,增强图卷积中的骨骼拓扑图.多组实验证明了 JFE-GCN方法的有效性,显著提升动作识别精度.
Action recognition algorithm based on joint feature-enhanced graph convolution
In recent years,human action recognition has seen widespread application in fields such as intelligent security and surveillance,medical rehabilitation,and smart homes,making it a prominent research topic in computer vision.Common methods typically involve extracting features from both skeleton data and RGB video data before fusing them.However,these methods often fail to consider the correlation between RGB and skeletal features,leading to suboptimal performance in certain similar scene environments.To address this issue,an action recognition algorithm based on a Joint Features Enhanced Graph Convolutional Network(JFE-GCN)is proposed.First,a joint feature extraction module(JFEM)processes the RGB video to capture movement details of the human body.Subsequently,through the joint feature-enhanced graph convolutional module(JFE-GC),local motion information surrounding the human body's joint points in the RGB video is extracted as joint features,establishing a connection between joint region features and skeletal features,thereby enhancing the skeletal topology in the graph convolution.Extensive experiments have demonstrated the effectiveness of the JFE-GCN method,significantly improving action recognition accuracy.

action recognitiongraph convolutionfeature enhancementintelligent surveillance

彭璐、马燕、赵晨、金涛、赵春晖

展开 >

中国空间技术研究院卫星应用总体部,北京 100094

北京遥感设备研究所,北京 100005

哈尔滨工程大学信息与通信工程学院,哈尔滨 150001

动作识别 图卷积 特征增强 智能监控

2024

黑龙江大学工程学报
黑龙江大学

黑龙江大学工程学报

影响因子:0.358
ISSN:2095-008X
年,卷(期):2024.15(4)