首页|基于深度强化学习的防空反导智能任务分配

基于深度强化学习的防空反导智能任务分配

扫码查看
随着作战双方不断采用新技术,信息时代的战争呈现出强博弈对抗性。在分析防空反导任务分配过程和决策的本质基础上,从敌我两个角度深入探讨了强博弈对抗环境下防空反导任务分配所面临的挑战。讨论了基于深度强化学习的防空反导智能任务分配方法的优势,提出了其实际应用所面临的问题,有望解决相关问题的技术途径和方法评价指标,为防空反导智能任务分配提供新思路。
Intelligent Task Assignment Research for Air Defense and Anti-missiles Based on Deep Reinforcement Learning
With the continuous adoption of new technologies by both combatants,warfare in the infor-mation age has taken on a strongly game-based adversarial nature.Based on the analysis of the process of air defence and anti-missile mission assignment and the nature of decision-making,the challenges faced by air defense and anti-missile mission assignment in a strong game confrontation environment are ex-plored in depth from both the perspectives of enemy and us.The advantages of the deep reinforcement learning-based intelligent task assignment method for air defense and anti-missile defense are discussed,and the key problems faced by the practical application of intelligent task allocation,the promising techni-cal ways to solve the relevant problems and the method evaluation indexes are proposed to provide new ideas for intelligent task assignment for air defense and anti-missile defense.

strong gaming countermeasuresair defense and anti-missiledeep reinforcement learn-ingtask assignment

刘家义、王刚、夏智权、王思远、付强

展开 >

国防大学联合作战学院,石家庄 050000

空军工程大学防空反导学院,西安 710051

解放军93126部队,北京 100000

强博弈对抗 防空反导 深度强化学习 任务分配

国家自然科学基金资助项目

62106283

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(1)
  • 24