首页|改进Faster R-CNN的视频SAR动目标检测算法

改进Faster R-CNN的视频SAR动目标检测算法

扫码查看
针对当前可用于深度学习的视频SAR数据稀少的现状,以及动目标检测算法中存在较多的漏检和虚警问题,基于美国桑迪亚国家实验室真实视频SAR数据制作深度学习数据集,提出一种改进Faster R-CNN的视频SAR动目标检测算法。算法以截取后的ResNet50为特征提取网络,利用K-means加遗传算法自适应计算锚框,并在数据预处理环节加入S型曲线增强方法,来增强图像的对比度信息。经实验验证,所提出方法能够显著提升动目标检测率和检测速度,其中,平均精度(AP)和F1分数提升均达到10个点以上,有效降低了虚警和漏检,整体表现优于一阶段算法SSD和RetinaNet。
Video SAR Moving Target Detection Algorithm Based on Improved Faster R-CNN
In view of the scarcity of video SAR data for deep learning and the problems of missing de-tection and false alarm existing in moving target detection algorithm,based on the deep learning dataset produced by the real video SAR data from Sandia National Laboratory,and an improved Faster R-CNN video SAR moving target detection algorithm is proposed.The algorithm takes the intercepted ResNet50 as the feature extraction network,uses K-means and genetic algorithm to adaptively calculate the size of anchor box,and adds the S-curve enhancement method to enhance the image contrast information in the data preprocessing.The experiment verifies that the proposed method can significantly improve the moving target detection rate and speed,with AP and F1 score improved by more than 10 points,which effectively reduces the false alarm and missed detection,and the overall performance is better than that of the one-stage algorithms SSD and RetinaNet.

video SARmoving target detectionFaster R-CNNimage enhancementK-meansge-netic algorithm

许宜明、李东生、杨浩

展开 >

国防科技大学电子对抗学院,合肥 230031

视频SAR 动目标检测 Faster R-CNN 图像增强 K-means 遗传算法

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(1)
  • 15