首页|无人机辅助通信网络中基于强化学习的用户速率优化算法

无人机辅助通信网络中基于强化学习的用户速率优化算法

扫码查看
无人机辅助地面蜂窝基站,形成混合的通信网络有望成为提升用户速率的一种重要手段。针对无人机辅助基站的通信网络,提出基于多臂赌博机的用户速率优化算法(multi-armed bandits-based rate optimization,MBRO)。先建立联合优化问题,再分别利用改进后K-means聚类算法和多臂赌博机算法求解。MBRO算法利用K-means聚类算法实现无人机的部署,并利用多臂赌博机算法完成信道分配和无人机的传输功率分配。仿真结果表明,相比于同类的基准算法,MBRO算法提高用户端速率。
Reinforcement Learning-Based User's Rate Optimizaton Algorithm for UAV-aided Communication Network
Unmanned Aerial Vehicles(UAVs)aid ground cellular base station and form a hybrid communication network,which is expected to become an important means of improving rate of users.As for the communication network with UAV-aided base,Multi-armed Bandits-based Rate Optimization(MBRO)algorithm is proposed First,the joint optimization problem is established,and then the improved K-means clustering algorithm and multi-armed bandit algorithm are respectively used to solve the problem.MBRO algorithm uses K-means clustering algorithm to realize the deployment of UAV,and uses multi-armed bandit algorithm is utilized to complete channel allocation and transmission power allocation of UAV.The simulation results show that compared with the similar benchmark algorithms,MBRO algorithm increases the rate of the user terminal.

unmanned aerial vehiclesbase stationrate of userK-means algorithmmulti-armed bandit

张延年、吴昊、张云

展开 >

南京交通职业技术学院电子信息工程学院,南京 211188

无人机 基站 用户速率 K-means算法 多臂赌博机

江苏省高等学校哲学社会科学研究一般项目江苏省高等学校"青蓝工程"培养对象优秀教学团队项目(2021)南京交通职业技术学院重大课题

2021SJA0689JZ2103

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(2)
  • 12