首页|基于循环神经网络的弹药着速预测

基于循环神经网络的弹药着速预测

扫码查看
针对当前立靶对雷达回波信号产生干扰,对着靶速度的提取过多依赖信号的滤波、特征点提取以及人工经验等问题,提出了利用循环神经网络(recurrent neural network,RNN)来分析弹药飞行的速度规律。通过某型穿甲弹速度数据的训练集和测试集,来进行弹药着速的预测。通过对比随机森林回归(random forest regression,RFR)算法和基于BP的多层感知机(multi-layer perceptron,MLP)模型在测试集上的均方根误差(root mean square error,RMSE),RNN收敛速度较快且在RMSE上的误差小,对于弹药的着靶速度有着很好的预测效果。
Prediction of Ammunition Target Velocity Based on Recurrent Neural Network
In response to the current problems that vertical target interferes with radar echo signals and the extraction of the target velocity relies too much on signal filtering,feature point extraction and manual experience,etc.,a recurrent neural network is proposed to analyze the velocity law of ammunition flight.Through the training set and test set of an armor-piercing ammunition velocity data,the ammunition target velocity is predicted.Root Mean Square Error of RFR algorithm and the BP-based MLP model in the test set are compared,the RNN converges faster and has a smaller error on the RMSE,which has a good prediction effect on the ammunition target velocity.

target velocityRNNmodel comparisonRMSE

王现磊、王义江、陈春江、吴家健

展开 >

解放军 63861 部队,吉林 白城 137001

着靶速度 RNN 模型对比 RMSE

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(3)
  • 11