首页|基于改进Q-learning算法的移动机器人路径规划

基于改进Q-learning算法的移动机器人路径规划

扫码查看
针对传统Q-learning算法应用在路径规划中存在收敛速度慢、运行时间长、学习效率差等问题,提出一种将人工势场法和传统Q-learning算法结合的改进Q-learning算法。该算法引入人工势场法的引力函数与斥力函数,通过对比引力函数动态选择奖励值,以及对比斥力函数计算λ值,动态更新Q值,使移动机器人具有目的性的探索,并且优先选择离障碍物较远的位置移动。通过仿真实验证明,与传统Q-learning算法、引入引力场算法对比,改进Q-learning算法加快了收敛速度,缩短了运行时间,提高了学习效率,降低了与障碍物相撞的概率,使移动机器人能够快速地找到一条无碰撞通路。
Research on Path Planning of Mobile Robots Based on Improved Q-learning Algorithm
Aiming at such problems as slow convergence speed,long running time and poor learning efficiency in the application of traditional Q-learning algorithm in path planning,an improved Q-learning algorithm combining artificial potential field method and traditional Q-learning algorithm is proposed.The gravitational function and repulsion function of the artificial potential field method are introduced by the algorithm,the reward value is dynamically selected by comparing the gravitational function,and Valueλis calculated by comparingthe repulsion function,the value Q is dynamically updated so that the mobile robot can make explorations with purposes,and can preferentially choose the position far away from the obstacle to move.The simulation experiment proves that,compared with the traditional Q-learning algorithm and the introduction of gravitational field algorithm,the improved Q-learning algorithm speeds up the convergence speed,shortens the running time,improves the learning efficiency,reduces the probability of collision with obstacles,and enables the mobile robots to find a collision free path quickly.

mobile robotspath planningimproved Q-learningartificial potential field methodreinforcement learning

井征淼、刘宏杰、周永录

展开 >

云南大学信息学院,昆明 650504

移动机器人 路径规划 改进的Q-learning 人工势场法 强化学习

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(3)
  • 13