首页|基于IFS-FOA-ELM的网络安全态势预测方法

基于IFS-FOA-ELM的网络安全态势预测方法

扫码查看
针对传统的网络安全态势预测方法在解决复杂网络环境下各种不确定性问题时往往准确性较差,不能快速准确预测网络安全态势变化趋势的问题,提出基于IFS-FOA-ELM的网络安全态势预测方法。基于直觉模糊集,构建网络安全信息特征要素,并计算出网络安全态势值。构建ELM预测模型,并利用果蝇优化算法对ELM的输入权值与阈值进行优化。最后,利用某互联网中心大数据环境下网络安全态势数据,验证IFS-FOA-ELM预测模型的精度与实时度。仿真结果表明:所提算法能够快速有效对网络安全态势进行预测。
Network Security Situation Prediction Method Based on IFS-FOA-ELM
Aiming at the problem that traditional network security situation prediction methods are often inaccurate when solving various uncertain problems in complex network environments,and cannot quickly and accurately predict the changing trend of network security situation,a network security situation prediction method based on IFS-FOA-ELM is proposed.Firstly,based on the intuitionistic fuzzy set,the characteristic elements of network security information are constructed and the network security situation values are computed.Then the ELM prediction model is constructed,and the input weights and thresholds of the ELM are optimized by the fruit fly optimization algorithm.Finally,the network security situation data are used under the big data environment of an Internet center,the accuracy and real-time degree of the IFS-FOA-ELM prediction model are verified.The simulation results show that the proposed algorithm can quickly and effectively predict the network security situation.

cyberspacesituation predictionintuitionistic fuzzy setfruit fly optimization algorithmextreme learning machine

刘晋州、唐雪琴、韩宝安、王明华

展开 >

成都职业技术学院,成都 610041

国防大学联合勤务学院,北京 100858

四川交通职业技术学院,成都 611137

空军工程大学空管领航学院,西安 710051

展开 >

网络空间 态势预测 直觉模糊集 果蝇优化算法 极限学习机

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(5)