首页|基于多级MEKF的微型无人机状态估计

基于多级MEKF的微型无人机状态估计

扫码查看
针对微型无人机在GPS拒止环境下,低成本惯性测量单元(inertial measurement unit,IMU)精度低稳定性差,传统算法难以保障其状态信息解算实时性和精度的问题,提出一种基于IMU和光流传感器融合的多级乘性扩展卡尔曼滤波(multiplicative extended Kalman filter,MEKF)状态估计算法。将磁力计、陀螺仪和加速度计的数据融合以实现姿态估计;利用姿态估计值、加速度和光流数据以实现速度估计;将速度估计值积分融合高度数据,以实现位置估计。实验结果表明,与传统算法相比,该算法能实现更快速可靠的状态估计。
Multi-level MEKF-based State Estimation of Micro-UAVs
Aiming at the problem that it is difficult for conventional algorithms to ensure the accu-racy and real-time of UAV state information resolution as the low cost inertial measurement units are in poor accuracy and weak in stability when micro-UAVs operate in when GPS-denied environment.A multi-level multiplicative extended Kalman filter(MEKF)state estimation algorithm based on the fu-sion of IMU and optical flow sensors is proposed.Firstly,the magnetometer,gyroscope and accelerome-ter data are fused to achieve attitude estimation;secondly,the attitude estimation,acceleration and opti-cal flow data are used to achieve the velocity estimation;finally,the integral of the velocity estimation is fused with the altitude data to achieve position estimation.The experiment results show that the algo-rithm achieves faster and more reliable state estimation than that of the traditional algorithms.

micro-UAVsoptical flow sensormultiplicative extended Kalman filterstate estimation

刘砚菊、李景泉、冯迎宾

展开 >

沈阳理工大学自动化与电气工程学院,沈阳 110159

微型无人机 光流传感器 乘性扩展卡尔曼滤波 状态估计

辽宁省基本科研基金资助项目

LJKMZ20220614

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(7)
  • 10