首页|YOLOv5-CCE:一种基于CA和EIoU的目标检测算法

YOLOv5-CCE:一种基于CA和EIoU的目标检测算法

扫码查看
为了减少YOLOv5模型在复杂环境下的误检率和漏检率,提出一种基于CA(Coordinate Attention)和EIoU(Efficient Intersection over Union)的目标检测模型YOLOv5-CCE。首先向Neck网络中的部分C3_2模块中嵌入坐标注意力机制CA,增强模型对特征的提取能力;其次为提高回归精度,提出一种基于Focal EIoU Loss改进的Focal CEIoU Loss。实验结果表明,在PASCAL VOC 2007+2012数据集上,YOLOv5-CCE模型在参数量和计算量基本保持不变的情况下,相较于原模型mAP@0。5、mAP@0。5:0。95和准确率分别提升了1。4%、1。3%和3。7%,因此,YOLOv5-CCE模型可以更好地适应复杂环境下的目标检测任务。
YOLOv5-CCE:an Object Detection Algorithm Based on CA and EIoU
In order to reduce the false detection rate and missed detection rate of the YOLOv5 model in complex environments,a target detection model YOLOv5-CCE based on CA(Coordinate Attention)and EIoU(Efficient Intersection over Union)is proposed.Firstly,the coordinate attention mechanism CA is embedded in partial C3_2 module in the Neck network to enhance the feature extraction ability of the model;secondly,to improve the regression accuracy,an improved Focal CEIoU Loss based on Focal EIoU Loss is proposed.The experimental results show that on the PASCAL VOC 2007+2012 data set,the YOLOv5-CCE model maintains the parameters and calculations basically unchanged,compared with the original model of mAP@0.5 and mAP@0.5:0.95 and the accuracy rate respectively,its accuracy rate has increased by 1.4%,1.3%and 3.7%respectively.Therefore,the YOLOv5-CCE model can better adapt to the target detection task in complex envi-ronments.

YOLOv5 algorithmEIoUFocal LossCA attention mechanismobject detection

王军、黄博文、蔡景贵

展开 >

沈阳化工大学计算机科学与技术学院,沈阳 110142

辽宁省化工过程工业智能化技术重点实验室,沈阳 110142

YOLOv5算法 EIoU Focal Loss CA注意力机制 目标检测

辽宁省自然科学基金辽宁省教育厅科研基金中国高校产学研创新基金辽宁省教育厅科研基金资助项目

2022-MS-291LJ20200242021LD06009LJKMZ20220781

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(9)