首页|基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法

基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法

扫码查看
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生的过拟合问题,同时更准确地提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92。84%、4。49%和10。54%,检测算法泛化性较强,性能由于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。
Attack Detection Method of ICMPv6 DDoS Based on CNN-BiLSTM
Aiming at the problem of DDoS attack detection in ICMPv6 network,a detection algorithm based on CNN-BiLSTM network is proposed.By adding the mixed use of attention mechanism,DropCon-nect and Dropout into the CNN-BiLSTM algorithm,the overfitting problems generated during training pro-cess are prevented and characteristic data of data is extracted more accurately.The experiments show that the average values of the detection accuracy rate,false alarm rate and missing alarm rate of the proposed algorithm are 92.84%,4.49%and 10.54%respectively in multiple experiments.The detection algorithm has strong generalization and can effectively handle the detection problem of ICMPv6 DDoS attack with its performance superior to other algorithms.

distributed denial of service attackattack detectionICMPv6CNNBiLSTM

郭峰、王春兰、刘晋州、王明华、韩宝安

展开 >

西京学院,西安 710123

成都职业技术学院,成都 610041

空军工程大学空管领航学院,西安 710051

四川交通职业技术学院,成都 611137

展开 >

分布式拒绝服务攻击 攻击检测 ICMPv6 CNN BiLSTM

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(9)