首页|基于融合知识图谱的航空柱塞泵故障预测诊断方法

基于融合知识图谱的航空柱塞泵故障预测诊断方法

扫码查看
针对航空柱塞泵运行过程中存在故障频率高、故障种类多、故障溯源难度大、预测准确率低等问题,提出了知识图谱和人工蜂群算法相融合的航空柱塞泵故障预测诊断方法。自顶向下定义知识图谱架构、实体类型和实体间关系,自底向上构建图谱的知识网络,数据层进行实体命名识别、抽取、融合、整合和推理;建立了人工蜂群故障预测算法包含输入层、指派层、传播层、自注意力层、输出层,采用故障特征提取、变邻域双向门控故障预测、注意力机制,通过特征向量训练形成了航空柱塞泵故障预测模型;通过实际维修案例,构建了航空柱塞泵故障诊断的知识图谱,实验证明了上述方法的有效性、可行性,验证了算法高效的故障诊断能力。
Aviation Plunger Pump Fault Prediction and Diagnosis Method Based on the Fusion of Knowledge Graph
Aiming at the problems of high fault frequency,many fault types,difficult fault traceability and low prediction accuracy in the operation of aviation plunger pump,a fault prediction and diagnosis method of aviation plunger pump based on the fusion of knowledge graph and artificial bee colony algorithm is proposed.Firstly,the knowledge graph architecture,entity types and inter-entity relationships are defined from top to bottom.The knowledge network of the graph is constructed from bottom to top,and entity naming recognition,extraction,fusion,integration and reasoning are performed for the data layer.Secondly,the artificial bee colony fault prediction algorithm is established,which includes input layer,assignment layer,propagation layer,self-attention layer and output layer.The fault feature extraction,variable neighborhood bidirectional gating fault prediction and attention mechanism are used to form the aviation plunger pump fault prediction model through feature vector training.Finally,through the actual maintenance cases,the knowledge graph of aviation plunger pump fault diagnosis is constructed.The experiment proves the effectiveness and feasibility of the above method,and verifies the efficient fault diagnosis ability of the proposed algorithm.

knowledge graphartificial bee colonyfault predictionfault diagnosisattention mechanism

钟维宇、柳林燕、唐启东、易江义、贺庆

展开 >

空军航空维修技术学院航空电子设备维修学院,长沙 410129

湖南省导弹维修工程技术研究中心,长沙 410129

南京理工大学机械工程学院,南京 210094

中国兵器装备集团航空制导弹药研发中心,长沙 410129

展开 >

知识图谱 人工蜂群 故障预测 故障诊断 注意力机制

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)