首页|一种轻量化伪装单兵目标检测算法

一种轻量化伪装单兵目标检测算法

扫码查看
针对已有模型参数量较大、推理速度较慢的问题,提出了一种轻量化伪装单兵目标检测算法。其骨干部分以HGNetv2为基础,采用SRepVGG模块进行多尺度特征融合,在耦合检测头中组合使用了部分卷积和1×1卷积。提出的深度学习网络与基准模型YOLOv8对比,在保证检测精度的同时,参数量减少了35。4%,推理速度提升了18。9%,更适合在算力资源受限的边缘计算设备上运行。
A Lightweight Target Detection Algorithm for Camouflaged Soldiers
Addressing the issues of large model parameters and slow inference speed in existing models,a lightweight target detection algorithm for camouflaged soldiers are proposed.The backbone of the algorithm is designed based on the HGNetv2,SRepVGG module is utilized to fuse multi-scale features.Finally,partial convolution and 1×1 convolution are combined in the coupled detection head.The deep learning network pro-posed in the article is compared with the baseline model YOLOv8,the parameters are induced by 35.4%and inference speed is increased by 18.9%,while detection accuracy is ensured.This makes it more suitable for the operation on edge computing devices with limited computational resources.

lightweightcamouflageobject detectionedge computingbackbone networkfeature fusion

张麟华、李腾、赵爽、富丽贞

展开 >

太原工业学院计算机工程系,太原 030008

太原工业学院化学与化工系,太原 030008

太原师范学院计算机与科学技术学院,山西 晋中 030619

中北大学软件学院,太原 030051

展开 >

轻量化 伪装 目标检测 边缘计算 骨干网络 特征融合

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)