首页|基于贝叶斯网络的重大事件预测方法

基于贝叶斯网络的重大事件预测方法

扫码查看
针对地区冲突等重大事件预测需求,将机器学习引入重大事件研究领域,利用贝叶斯网络结构表示预测事件与影响因素之间的关系,通过对因果网的分析,得到重大事件发生概率。为更好地匹配数据语义特征,采用正则表达式作为匹配规则;考虑到数据具有时效性,引入时间衰减函数并采用模糊随机变量描述节点状态提高预测结果准确性。该方法能够高效、准确、自动预测重大事件发生概率,能够为提前制定战略决策提供一定的辅助支持。
A Method for Predicting Major Events Based on Bayesian Network
Aiming at the prediction needs of major events such as regional conflicts,machine learn-ing is introduced into the research field of major events,and the relationship between predicted events and influencing factors is expressed by using Bayesian network structure,and the probability of major events is obtained through the analysis of causal networks.In order to better match the semantic character-istics of data,regular expressions are used as matching rules.Considering the timeliness of the data,the time decay function is introduced and fuzzy random variables are used to describe the node state to improve the accuracy of the prediction results.This method can efficiently,accurately and automatically predict the occurrence probability of major events,and can provide certain auxiliary support for making strategic decisions in advance.

Bayesian networkmajor event predictionregular expressiontime decay

白柯鑫、金山、常海艳、柳世雄、郭鹏飞

展开 >

北方自动控制技术研究所,太原 030006

东北大学计算机科学与工程学院,沈阳 110000

贝叶斯网络 重大事件预测 正则表达式 时间衰减

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)