首页|基于Stacking集成学习的供弹机构小样本状态识别

基于Stacking集成学习的供弹机构小样本状态识别

扫码查看
针对测试火炮供弹机构的弹载记录仪运动数据样本量少及样本不均衡的问题,提出一种基于Stacking集成学习的供弹机构小样本状态识别方法。对原始数据采用小波滤波和标准差归一化进行预处理,以改进的果蝇优化灰色神经网络和长短时记忆神经网络(long short-term memory,LSTM)作为初级学习器,以线性回归(linear regres-sion,LR)作为次级学习器构成Stacking集成学习模型。通过弹载记录仪得到的真实数据,建立对供弹机构中限位器的异常状态识别实验,研究结果表明,在小样本的环境下集成学习模型较单一的学习模型具有更高的准确度及稳定性,能够更加有效识别供弹机构的异常状态。
Small-sample State Recognition of Ammunition Feeding Mechanism Based on Stacking Ensemble Learning
Aiming at the problem of small sample size and uneven sample size of the motion data of the on-board recorder for testing the ammunition feeding mechanism of artillery,a Stacking ensemble learning based small sample state recognition method for ammunition feeding mechanisms is proposed.The original data are first preprocessed by wavelet filtering and standard deviation normalization,and the improved drosophila optimization grey neural network and the long short-term memory neural network(LSTM)are regarded as the primary learners,and linear regression(LR)is used as secondary learners to form the Stacking ensemble learning model.Based on the real data obtained from the onboard recorder,an experiment is conducted to identify the abnormal state of the limiter in the ammunition supply mecha-nism.The research results show that in a small sample environment,the integrated learning model has higher accuracy and stability than that of a single learning model,and can more effectively identify the abnormal state of the ammunition supply mechanism.

grey neural networklong short-term memory networkensemble learningmissile borne recordersmall sample

季学隆、王茂森、戴劲松

展开 >

南京理工大学,南京 210094

灰色神经网络 长短时记忆神经网络 集成学习 弹载记录仪 小样本

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)