首页|基于卷积神经网络编码加扰类型识别

基于卷积神经网络编码加扰类型识别

扫码查看
针对线性分组码加扰和卷积码加扰类型的识别问题,提出了一种利用相关特征和浅层神经网络相结合的加扰类型识别方法。推导了加扰序列码元的互相关特征,引入了有偏自相关函数,两者结合作为输入的相关特征;在分析加扰序列相关性的基础上,构建了实时性较强的浅层神经网络模型;将加扰数据集输入到网络模型中,完成了网络的训练和识别测试。仿真结果表明,相比于基于多重分型谱的传统算法,所提算法能识别多种加扰类型,同时所提算法的抗误码性能更强,为进一步进行扰码参数识别奠定了基础。
Scrambled Type Identification Based on Convolutional Neural Network Encoding
Aiming at the problem of recognizing the scrambled type of linear blocked code and convolutional code,a scrambled type recognition method using the combination of correlation features and shallow neural network is proposed.Firstly,the mutual correlation features of scrambled symbols are derived,and the biased autocorrelation function is introduced,and the combination of the two is used as the input correlation features;then on the basis of analyzing the correlation of the scrambled sequences,a shallow neural network model with high real-time performance is constructed;finally,the scrambled dataset is input into the network model,and the training and the recognition test of the network are completed.The simulation results show that compared with the traditional algorithm based on multiple fractal spectra,the proposed algorithm can recognize multiple types of scrambling,and at the same time,the proposed algorithm has stronger anti-bit error performance,which lays the foundation for further scrambled parameter recognition.

linear block code scramblingconvolutional code scramblingsymbol inter-correlationbiased autocorrelation functionshallow neural networks

卫翔、刘星璇、谭继远

展开 >

海军潜艇学院,山东 青岛 266000

线性分组码加扰 卷积码加扰 码元互相关 有偏自相关函数 浅层神经网络

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)