首页|基于主成分分析的自适应低光照图像增强算法

基于主成分分析的自适应低光照图像增强算法

扫码查看
针对低光照图像能见度低、颜色退化、噪声大等问题,提出了一种基于主成分分析的自适应低光照图像增强算法。将原始RGB图像转换为HSV色彩空间,提取V分量;再根据估计的光照分量调整自适应亮度增强函数的参数,并利用图像融合增强图像的V分量;将图像从HSV空间转换回RGB空间。实验结果表明,提出的算法能够保留低光照图像的细节,且能很好地平衡图像颜色。
Adaptive Low-light Image Enhancement Algorithm Based on Principal Component Analysis
Aiming at the problems of low visibility,color degradation and noise of low-light images,etc.an adaptive low-light image enhancement algorithm based on principal component analysis is pro-posed.Firstly,the original RGB image is converted to HSV color space and the V component is extracted.Then the parameters of the adaptive brightness enhancement function is adjusted according to the esti-mated illumination component,and the V component of the image is enhanced by image fusion.Finally,the image is converted from HSV space back to RGB space.Experimental results show that the proposed algorithm retains the details of low-light images and balances image colors well.

Retinex theorymorphological gradientsprincipal component analysisimage fusion

郭苗苗、胡红萍、白艳萍、宋娜

展开 >

中北大学数学学院,太原 030051

Retinex理论 形态学梯度 主成分分析 图像融合

2024

火力与指挥控制
火力与指挥控制研究会,火力与指挥控制专业情报网

火力与指挥控制

CSTPCD北大核心
影响因子:0.312
ISSN:1002-0640
年,卷(期):2024.49(11)