首页|基于XGBoost算法的沥青路面横向裂缝预测模型

基于XGBoost算法的沥青路面横向裂缝预测模型

扫码查看
横向裂缝是沥青路面的主要病害形式,其预测精度直接关系到路面结构设计的可靠性.为准确预测沥青路面在使用过程中横向裂缝的破坏情况,基于XGBoost算法构建了沥青路面横向裂缝预测模型.利用TPE-BO方法优化模型的超参数能提升模型性能.相较于RF和CatBoost模型,提出的模型预测精度更高.此外,通过相关性分析和SHAP方法对特征重要性进行评估,当模型输入变量数量减少 4 个时,模型效果达到最佳,降低了收集数据的成本和难度,对提高公路养护的经济性具有重要意义.
Prediction model of transverse cracks of asphalt pavement based on XGBoost algorithm
Transverse cracks are the main form of distress in asphalt pavement,and the accuracy of their pre-diction directly affects the reliability of pavement structure design.In order to accurately predict the damage of transverse cracks in asphalt pavement during use,a transverse crack prediction model based on the XGBoost algorithm is proposed.The model's performance can be enhanced by optimizing its hyperparameters with the TPE-BO method.Compared with RF and CatBoost models,the proposed model has higher prediction accuracy.In addition,the study evaluates the importance of features through correlation analysis and the SHAP method.The results show that the model achieves the best performance when the number of input variables is reduced by 4,reducing the cost and difficulty of data collection,which is of great significance for improving the econom-ic benefits of highway maintenance.

XGBoosttransverse crack predictionTPE-BO methodSHAP method

丁壮、王长柏、肖伟

展开 >

安徽理工大学 土木建筑学院,安徽 淮南 232001

XGBoost 横向裂缝预测 TPE-BO SHAP

安徽理工大学研究生创新基金

2022CX2042

2024

河南城建学院学报
河南城建学院

河南城建学院学报

影响因子:0.457
ISSN:1674-7046
年,卷(期):2024.33(4)
  • 7