首页|基于双通道残差网络的机载LiDAR点云数据分类

基于双通道残差网络的机载LiDAR点云数据分类

扫码查看
为改善传统残差网络在机载LiDAR点云数据分类中信息流通不充分的问题,提出一种基于双通道残差网络的机载LiDAR点云数据分类模型(DP-ResNet).DP-ResNet采用编码-解码结构.编码阶段主要采用两种不同形式的双通道残差结构和无参的聚合算子相结合,不仅能加强网络信息的流通,还能减少网络参数.解码阶段采用传统的逆距离加权和1×1 卷积完成.为了验证DP-ResNet模型的分类性能,在GML DataSetA数据集上进行分类实验.结果表明:与基准网络Closerlook相比,DP-ResNet模型的OA和AvgF1分别提高6.25%和15.45%,具有更好的分类性能;与其他模型相比,DP-ResNet具有极强的竞争力.
Classification of airborne LiDAR point cloud data based on dual channel residual network
To improve the insufficient information circulation in the classification of airborne LiDAR point cloud data by traditional residual network,an airborne LiDAR point cloud data classification model,namely DP-Res-Net,based on dual-channel residual network is proposed.DP-ResNet adopts an encoding-decoding structure.In the encoding stage,two different forms of dual channel residual structure and parameter-free aggregation opera-tor are mainly combined.This can not only strengthen the circulation of network information,but also reduce network parameters.The decoding stage is done using traditional inverse distance weighting and 1×1 convo-lution.To verify the classification performance of the DP-ResNet model,classification experiments were per-formed on the GML DataSetA dataset.The results show that compared with the benchmark network Closerlook,the OA and AvgF1 of DP-ResNet model are improved by 6.25%and 15.45%respectively,indicating better classification performance.Compared with other models,DP-ResNet also has strong competitiveness.

airborne laser radarpoint cloud dataresidual networkDP-ResNet model

肖根

展开 >

中国地质大学 数学与物理学院,湖北 武汉 430074

机载激光雷达 点云数据 残差网络 DP-ResNet 模型

国家自然科学基金智能地理信息处理湖北省重点实验室开放研究项目

42374147KLIGIP-2023-C02

2024

河南城建学院学报
河南城建学院

河南城建学院学报

影响因子:0.457
ISSN:1674-7046
年,卷(期):2024.33(4)