首页|基于GA-BP神经网络的高性能混凝土抗压强度预测

基于GA-BP神经网络的高性能混凝土抗压强度预测

扫码查看
抗压强度是衡量高性能混凝土(HPC)性能的关键指标.为精准预测其抗压强度,将BP神经网络与遗传算法(GA)相结合,利用181组数据对模型进行训练,并通过灰色关联分析(GRA)进行敏感性评估,构建了一种新型的GA-BP-GRA模型.研究表明:神经网络可以快速准确地预测HPC的抗压强度;与单一的神经网络模型相比,经过重组优化的新模型在预测抗压强度时具有更高的精准度,且预测结果的离散度更小;GRA能够有效分析HPC主要组成成分的敏感性.提出的GA-BP-GRA模型可以快速且精准地预测混凝土的抗压强度,从而节省试验时间、降低设计成本.
Prediction of compressive strength of high performance concrete based on GA-BP neural network
Compressive strength is a key indicator for evaluating the performance of high performance concrete(HPC).In order to accurately predict its compressive strength,a new GA-BP-GRA model was developed by combining BP neural network with genetic algorithm(GA),using 181 sets of data for model training,and con-ducting sensitivity assessment through grey relational analysis(GRA).The study shows that the neural network can predict the compressive strength of HPC quickly and accurately;compared with a single neural network model,the re-optimized new model has higher accuracy in predicting compressive strength and smaller disper-sion in the prediction results;GRA can effectively analyze the sensitivity of the main components of HPC.The proposed GA-BP-GRA model can rapidly and accurately predict the compressive strength of concrete,thereby saving test time and reducing design costs.

high performance concretecompressive strengthgenetic algorithmBack Propagation nearal networkgrey relational analysissensitivity

项庆军、张学、江豪杰、金立兵、段杰

展开 >

中建八局第二建设有限公司,山东济南 250000

河南工业大学土木工程学院,河南郑州 450000

中国五冶集团有限公司,四川成都 610000

高性能混凝土 抗压强度 遗传算法 BP神经网络 灰色关联分析 敏感性

国家自然科学基金资助项目

52178171

2024

河南城建学院学报
河南城建学院

河南城建学院学报

影响因子:0.457
ISSN:1674-7046
年,卷(期):2024.33(5)