摘要
采用带补充项的傅立叶级数作为挠度函数,针对四边不同支承矩形薄板,推导了确定待定系数的方程组,给出可处理简支边、固支边和自由边任意组合条件下统一的结构计算公式.探讨了集中荷载作用处弯矩级数解不收敛的处理办法,以及双向板简化为单向板需要达到的长宽比问题.结果表明,集中荷载作用处的弯矩,可采用挠度值按中心差分公式进行计算,差分步长可取10 mm.对边支承对边自由板及一边固支三边自由板,可视作单向板.当四边支承板的长宽比达到2∶1、2.5∶1及4.5∶1时,可分别简化为两端固支、一端简支一端固支及两端简支单向板.三边支承一边自由板长宽比达到1∶1及2∶1时,可分别简化为两端固支(及一端简支一端固支)及两端简支单向板;长宽比达到6∶1时,可简化为悬臂单向板.两邻边支承两邻边自由板若要简化为悬臂单向板,在两支承边为固支时,长宽比需要达到2∶1;在支承边为一边简支一边固支时,长宽比要达到1.5∶1.
基金项目
国家自然科学基金高铁联合基金重点项目(U1934210)