首页|基于深度学习的镍基高温合金叶片磨削烧伤识别研究

基于深度学习的镍基高温合金叶片磨削烧伤识别研究

扫码查看
针对目视检查镍基高温合金叶片磨削烧伤时易出现误检、漏检等问题,提出一种基于深度学习的镍基高温合金叶片磨削烧伤识别分类模型(Tenon Grinding Burn Net,TenonG-BNet).以K4125镍基高温合金叶片为研究对象,通过磨削烧伤试验和试件组织检测获得不同烧伤程度的叶片榫齿磨削烧伤分级标准和对应的图片集;将ODConv动态卷积融合Inception V2模块和Coordinate Attention注意力机制,保证模型轻量化的同时提高模型的特征提取能力;使用全连接层进行识别分类.结果表明,与其他4个经典分类模型相比,TenonGBNet在具有较小的模型复杂度和参数量的同时保持了96.50%的平均分类准确率,且各烧伤等级的分类准确率均超过95%.
Research on Grinding Burn Identification of Nickel-based Superalloy Blades Based on Deep Learning
A deep learning-based recognition and classification model named Tenon Grinding Burn Net(TenonGBNet)is proposed to address the issues of misdiagnosis and missed detection in visual inspection of grinding burns on nickel-based Superalloy blades.The K4125 nickel-based superalloy blades are chosen as the target,and through grinding burn tests and specimen organization inspection,a set of classification standards and corresponding image collection for different degrees of blade tenon grinding burns are obtained.Then,ODConv dynamic convolution is employed to fuse Inception V2 modules and the Coordinate Attention mechanism to enhance the model′s feature extraction capability while ensuring the model is lightweight.Finally,a fully connected layer is employed for identification and classification.Experimental results indicate that,compared with four other classical classification models,TenonGBNet achieves an average classification accuracy of 96.50%while maintaining a minor model complexity and parameter count.Additionally,the classification accuracy for each burn level exceeds 95%.

deep learningnickel alloygrindingburnimage identification

刘超、刘成、王虎、陈亮、梁晓艳、金滩

展开 >

中国航发南方工业有限公司,湖南 株洲 412001

湖南南方通用航空发动机有限公司,湖南 株洲 412001

湖南大学 机械与运载工程学院,湖南 长沙 410082

深度学习 镍基合金 磨削 烧伤 图像识别

中国航发南方工业有限公司合作项目

N-22120201

2024

湖南大学学报(自然科学版)
湖南大学

湖南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.651
ISSN:1674-2974
年,卷(期):2024.51(4)
  • 19