首页|基于CT-GAN的半监督学习窃电检测方法研究

基于CT-GAN的半监督学习窃电检测方法研究

扫码查看
针对电网公司获取有标签数据成本高、难度大,而获取的无标签数据难以训练有效窃电检测模型的问题,提出了在少量有窃电标签数据场景下基于联合训练生成对抗网络(Co-training Generative Adversarial Networks,CT-GAN)的半监督窃电检测方法。首先,探究了生成对抗网络及半监督生成对抗网络的原理与结构。其次,提出了采用Wasserstein距离取代JS(Jensen-Shannon)散度和KL(Kullback-Leibler)散度距离以解决生成对抗网络因梯度消失和模式崩溃原因导致的模型训练不稳定和生成数据质量低的问题,并构建了多判别器联合训练模型,避免了单个判别器分布误差高的问题,同时增强了GAN生成标签样本数据的能力,通过扩充标签样本数据集,提升了模型检测准确度和泛化能力。最后,采用爱尔兰电网数据集验证了该方法的准确性和有效性。
Research on Semi-supervised Learning Detection Method of Electricity Theft Based on CT-GAN
Aiming at the high cost and difficulty of obtaining labeled data for power grid companies,and the difficulty of training an effective electricity theft detection model with unlabeled data,this paper proposes a method based on CT-GAN(Co-training Generative Adversarial Networks)semi-supervised electricity theft detection method.Firstly,the principles and structures of generative adversarial networks and semi-supervised generative adversarial networks are explored.Secondly,it is proposed to replace the JS(Jensen-Shannon)divergence and KL(Kullback-Leibler)divergence distance with the Wasserstein distance to solve the problem of unstable model training and low quality of generated data caused by the gradient disappearance and mode collapse of the generative confrontation network problem,and built a multi-discriminator Co-training model to avoid the problem of high distribution error of a single discriminator.At the same time,it enhanced the ability of GAN to generate label sample data.By expanding the label sample data set,the model detection accuracy and generalization ability were improved.Finally,the accuracy and effectiveness of the method are verified using the Irish power grid dataset.

electricity theft detectiongenerative adversarial networksemi-supervised learningWasserstein distancediscriminator

杨艺宁、张蓬鹤、夏睿、高云鹏、王飞、朗珍白桑

展开 >

中国电力科学研究院有限公司,北京 100192

湖南大学 电气与信息工程学院,湖南 长沙 410082

国网西藏电力有限公司,西藏 拉萨 850000

窃电检测 生成对抗网络 半监督学习 Wasserstein距离 判别器

中国电力科学研究院研究开发项目

JL8422-003

2024

湖南大学学报(自然科学版)
湖南大学

湖南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.651
ISSN:1674-2974
年,卷(期):2024.51(6)
  • 13