首页|子空间与KL信息结合的FCM多光谱遥感图像分割

子空间与KL信息结合的FCM多光谱遥感图像分割

扫码查看
针对传统模糊C-均值聚类(FCM)算法用于含噪声多光谱遥感图像分割时存在的精度不足问题,提出一种自适应模糊子空间与增强KL信息相结合的FCM多光谱遥感图像分割算法。首先,使用局部模糊因子,在不依赖参数的情况下,通过相似性度量和自适应约束参数自动消除噪声干扰,并提取图像的局部空间信息。其次,将原始图像信息和模糊因子处理过的局部空间信息统一整合到模糊子空间聚类中,对图像的多个通道进行自适应加权处理,以提高分割精度。最后,将KL信息以正则项的形式引入FCM目标函数中进行聚类计算,并通过ESD(Extreme Studentized Deviate)检测模型剔除隶属度矩阵中的离群值,以增强KL先验信息,降低隶属度模糊性。AID数据库和真实环境下的多光谱遥感图像分割实验表明,在模拟噪声环境中,所提出算法不仅可以抑制噪声,而且能得到较高的分割精度。此外,本文算法在分割精度、模糊系数和峰值信噪比等评价指标方面也均优于其他几种变体式FCM算法。
Fuzzy C-mean Multi-spectral Remote Sensing Image Segmentation with Combined Subspace and KL Information
For the problem of insufficient accuracy of traditional fuzzy C-means clustering(FCM)algorithm for noise-containing multi-spectral remote sensing image segmentation,an FCM multi-spectral remote sensing image segmentation algorithm combining adaptive local fuzzy subspace and enhanced KL is proposed.Firstly,the local fuzzy factor is used to automatically eliminate the noise interference and extract the local spatial information of the image by similarity metric and adaptive constraint parameters without relying on parameters.Secondly,the original image information and the local spatial information processed by the fuzzy factor are unified and integrated into the fuzzy subspace clustering,and the multiple channels of the image are adaptively weighted to enhance the segmentation accuracy.Finally,the KL information is introduced into the FCM objective function in the form of regular terms for clustering calculation,and the outliers in the membership matrix are removed by ESD(Extreme Studentized Deviate)detection model to enhance the KL prior information and reduce the ambiguity of the membership.The experiments of real multi-spectral remote sensing image segmentation show that in the simulation of noise environments,the algorithm in this paper can suppress the noise and can guarantee the segmentation accuracy better at the same time.In addition,the algorithm in this paper outperforms several other variant FCM algorithms in terms of evaluation indexes such as segmentation accuracy,fuzzy coefficient,and peak signal-to-noise ratio.

fuzzy clusteringsubspacefuzzy factorKL informationimage segmentation

吴嘉昕、王小鹏、刘扬洋

展开 >

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

模糊聚类 子空间 模糊因子 KL信息 图像分割

国家自然科学基金资助项目兰州市科技计划资助项目

61761027

2024

湖南大学学报(自然科学版)
湖南大学

湖南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.651
ISSN:1674-2974
年,卷(期):2024.51(8)
  • 5