首页|融合模式决策的4WIS车辆路径规划方法

融合模式决策的4WIS车辆路径规划方法

扫码查看
针对四轮独立转向(four-wheel independent steering,4WIS)车辆的路径规划问题,提出了一种融合模式决策的图搜索算法.首先,对4WIS车辆三种运动模式进行建模,并分析其运动模式的运动特性,据此设计多模式节点拓展策略,实现了4WIS车辆多运动模式与路径规划的融合.然后,针对最优节点选取和运动模式决策问题,设计了多目标代价函数,引导4WIS车辆合理切换运动模式,并生成平滑路径.最后,在MATLAB软件上进行仿真实验,在多种场景中测试所提出算法,验证其可行性与有效性.结果表明:提出的算法在路径规划中考虑了三种运动模式的优化组合与模式切换问题,能实现最优运动模式序列和最短路径规划.且该算法求解效率高,所规划路径优异,能充分发挥4WIS车辆的高灵活性与高通过性,有效解决其路径规划问题.
Path Planning Method Integrated with Mode Decision for 4WIS Vehicles
Aiming at the path planning problem of four-wheel independent steering(4WIS)vehicles,a graph search algorithm integrated with mode decision is proposed.Firstly,three motion modes of 4WIS vehicle are modeled,and the motion characteristics of each motion mode are analyzed.Based on this,a multi-mode node expansion strategy is designed to realize the integration of 4WIS vehicle multiple motion modes and path planning.Then,a multi-objective cost function is designed to guide 4WIS vehicles to switch motion modes reasonably and generate a smooth path for optimal node selection and motion mode decision-making.Finally,the simulation experiment is carried out on MATLAB software,and the proposed algorithm is tested in various scenarios to verify the feasibility and effectiveness.The results show that the proposed algorithm considers the optimization combination and mode switching of three motion modes in path planning,and can achieve the optimal motion mode sequence and the shortest path planning.This algorithm has high solving efficiency and excellent planned path,and can fully utilize the high flexibility and trafficability of 4WIS vehicles,effectively solving their path planning problem.

vehicle engineeringpath planninggraph search algorithmfour-wheel independent steeringmotion modes

秦洪懋、金英杰、杨泽宇、胡满江、崔庆佳、徐彪

展开 >

湖南大学 机械与运载工程学院,湖南 长沙 410082

湖南大学 无锡智能控制研究院,江苏 无锡 214115

汽车工程 路径规划 图搜索算法 四轮独立转向 运动模式

国家自然科学基金资助项目国家自然科学基金资助项目湖南省自然科学基金资助项目

52222216522024932021JJ40095

2024

湖南大学学报(自然科学版)
湖南大学

湖南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.651
ISSN:1674-2974
年,卷(期):2024.51(8)
  • 5