首页|基于MDS-YOLO模型的小目标检测问题研究

基于MDS-YOLO模型的小目标检测问题研究

扫码查看
针对目前主流算法对小目标检测存在计算量大与准确率较低的问题,本文以轻量级网络MobileNetV3代替YOLOv4中的主干网络,并将颈部网络中的一部分普通卷积用深度可分离卷积替代,同时针对小目标检测定义一个新的损失函数IF-EIoU Loss,由此构建了MDS-YOLO目标检测模型。该模型具有较高的检测速度,且针对小目标具有较好的检测性能。为了验证模型的有效性,分别在MS COCO数据集和Visdrone2019数据集上进行了实验。与 YOLOv4算法相比,在MS COCO数据集上,MDS-YOLO算法的平均检测精度提升了1。5个百分点,对于小目标的检测精度提升了3。3个百分点,检测速度也从31帧/s提升至36帧/s;在Visdrone2019数据集上,MDS-YOLO算法将平均检测精度从YOLOv4的14。9%提升至16。3%。实验结果表明,本文提出的MDS-YOLO算法能有效提升小目标检测精度。
Research of Small Object Detection Problem Based on MDS-YOLO Model
To solve the problem of large computation and low accuracy of the current mainstream algorithms for small object detection,this paper replaces the backbone network in YOLOv4 with the lightweight network MobileNetV3,and replaces some ordinary convolutions in the neck network with depthwise separable convolutions.At the same time,a new loss function IF-EIoU Loss is defined for small object detection.Therefore,MDS-YOLO object detection model is constructed.This model has a high detection speed and good detection performance for small object.To verify the effectiveness of the model,experiments are carried out on MS COCO dataset and Visdrone2019 dataset,respectively.Compared with the YOLOv4 algorithm,on MS COCO dataset,the average detection accuracy of the MDS-YOLO algorithm is improved by 1.5 percentage points,the detection accuracy of small object is increased by 3.3 percentage points,and the detection speed is also increased from 31 frames per second to 36 frames per second.On the Visdrone2019 dataset,the MDS-YOLO algorithm increases the average detection accuracy from 14.9%of YOLOv4 to 16.3%.The experimental results show that the MDS-YOLO algorithm proposed can effectively improve the detection accuracy of small object.

small object detectionYOLOv4 algorithmlightweight network MobileNetV3IF-EIoU LossMS COCO dataset

朱恩文、梁曌、肖进文、梁小林

展开 >

长沙理工大学 数学与统计学院,湖南 长沙,410114

湖南工程学院 计算科学与电子学院,湖南 湘潭,411104

小目标检测 YOLOv4算法 轻量级网络MobileNetV3 IF-EIoU Loss MS COCO数据集

2024

湖南大学学报(自然科学版)
湖南大学

湖南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.651
ISSN:1674-2974
年,卷(期):2024.51(12)