首页|LIF-SSEM:一种高光谱图像分类的脉冲神经网络研究

LIF-SSEM:一种高光谱图像分类的脉冲神经网络研究

扫码查看
针对深度学习模型参数多、算法复杂、计算能耗高,难以应用在高光谱图像分类的移动计算问题,本文设计了一种基于LIF神经元和注意力机制的脉冲神经网络(LIF-SSEM)模型.利用SNN架构和注意力机制融合高光谱图像的时空信息,可消除光谱异质给图像分类带来的不确定性.模型同时利用LIF神经元和近似导数算法可实现空间光谱特征的有效提取.在IP、PU、SA、WHHC和WHLK数据集的实验结果表明,LIF-SSEM模型具有较好的性能优势.
LIF-SSEM:A Spiking Neural Network for Hyperspectral Image Classification
This paper proposes a spiking neural network(LIF-SSEM)based on LIF neurons and attention mechanism to address the challenges of deep learning models with multiple parameters,complex algorithms,and high computational energy consumption,which are difficult to apply to hyperspectral image classification based on mobile computing.The model utilizes the SNN architecture and attention mechanism to integrate the spatiotemporal information of hyperspectral images,which can eliminate the uncertainty caused by spectral heterogeneity in image classification.The model can effectively extract spatial spectral features by simultaneously utilizing LIF neurons and approximate derivative algorithms.The experimental results on IP,PU,SA,WHHC,and WHLK datasets show that the LIF-SSEM model has good performance advantages.

hyperspectral image classificationspiking neural networkleaky integrate-and-fireattention mechanism

党兰学、李金阳、白春洋、刘扬

展开 >

河南大学河南省大数据分析与处理重点实验室/计算机与信息工程学院,河南开封 475004

河南大学淮河医院,河南开封 475004

高光谱图像分类 脉冲神经网络 LIF 近似导数算法 注意力机制

河南省科技攻关计划河南省自然科学基金重点项目河南省高等学校科技创新团队支持计划

23210221001324230042121824IRTSTHN021

2024

河南大学学报(自然科学版)
河南大学

河南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.464
ISSN:1003-4978
年,卷(期):2024.54(3)