首页|基于生成对抗网络的图像超分辨重建算法研究

基于生成对抗网络的图像超分辨重建算法研究

扫码查看
本文在ESRGAN网络的基础之上通过在生成网络编码器引入深度多尺度卷积模块(Deep Multiscale Con-volution,DMCONV),在生成网络解码器融入通道注意力模块(Innovation Channel Attention,ICA)和胶囊网络(Capsule Network,CapsNet)多维神经元,构建了一种基于多尺度卷积、注意力机制和向量神经元的生成对抗网络图像超分辨网络AC-ESRGAN,并在BSD100、Manga109、Set14等多个数据集上进行了训练、测试和消融等实验.实验表明,该网络可以更好地提取图像更深层特征,实现网络局部跨通道交互,增强对图像的表达能力和理解能力.
Research on Super Resolution Image Reconstruction Method Based on Generative Adversarial Networks
Based on the ESRGAN network,this paper introduces the deep multiscale convolution(DMCONV)module into the generative network encoder,and integrates the innovation channel attention(ICA)and capsule network(CapsNet)multidimensional neurons into the generative network decoder.A kind of AC-ESRGAN image super-resolution network based on multi-scale convolution,attention mechanism and vector neurons was constructed,and the training,testing and ablation experiments were conducted on BSD100,Manga109,Set14 and other data sets.The experiment shows that the network can extract the deeper features of the image better,realize the local cross-channel interaction of the network,and enhance the ability of expression and understanding of the image.

image super-resolution reconstructiongenerative adversarial networksdeep learningmulti-scale convolutionattention mechanism

李永军、陈锦智敏、李孟军、李耀、张心茹

展开 >

河南大学物理与电子学院,河南开封 475004

图像超分辨 生成对抗网络 深度学习 多尺度卷积 注意力机制

河南省科技攻关项目河南省科技攻关项目开封市科技攻关项目

2121022101512421021103432101006

2024

河南大学学报(自然科学版)
河南大学

河南大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.464
ISSN:1003-4978
年,卷(期):2024.54(4)
  • 3