首页|基于Vision Transformer和迁移学习的垃圾图像分类研究

基于Vision Transformer和迁移学习的垃圾图像分类研究

扫码查看
为解决垃圾图像分类中分类准确率低及小样本类别性能差的问题,以生活垃圾图像为研究对象,以正确识别生活垃圾类别为研究目标,利用Vision Transformer模型为分类网络架构,使用迁移学习机制实现该模型在华为云垃圾分类数据集上的训练及分类推理.实验结果表明,基于注意力机制的分类模型相较于基于卷积结构的ResNet、DenseNet分类模型具有更高的分类准确率,可达96%,同时测试集的混淆矩阵表明Vision Transformer分类模型在样本不均衡数据集中对于小样本类别也具有较高的准确率,具有实际部署、推理的应用价值.
Research on garbage image classification based on Vision Transformer and transfer learning
This paper takes domestic garbage images as the research object and the correct identification of domestic garbage categories as the research objective respectively in order to solve the problem of low classification accuracy and poor classification performance of small categories in the classification of domestic garbage images.The Vision Transformer model is used as the classification network architecture,and the transfer learning mechanism is used to realize the training and classification reasoning of the Vision Transformer model on the Huawei cloud garbage classification data set.The experimental results show that the classification model based on attention mechanism has higher classification accuracy than ResNet and DenseNet based on convolution structure.The classification accuracy can reach 96%,at the same time,the confusion matrix of the test set shows that the Vision Transformer classification model has high accuracy for small sample categories in the unbalanced datasets and has the application value of practical deployment and reasoning.

garbage image classificationtransfer learningconvolutional neural networkattentionVision Transformer

郭伟、余璐、宋莉

展开 >

安徽城市管理职业学院信息技术学院,安徽合肥 230013

马鞍山学院大数据与人工智能学院,安徽马鞍山 243000

南京铁道职业技术学院 通信信号学院,江苏南京 210031

垃圾图像分类 迁移学习 卷积神经网络 注意力 Vision Transformer

2024

河南工程学院学报(自然科学版)
河南工程学院

河南工程学院学报(自然科学版)

影响因子:0.26
ISSN:1674-330X
年,卷(期):2024.36(1)
  • 11