首页|基于机器学习方法的学籍异动预测研究——以某地方本科院校为例

基于机器学习方法的学籍异动预测研究——以某地方本科院校为例

扫码查看
以某地方本科院校2018 级、2019 级、2020 级、2021 级学生课程成绩为研究对象,从二级学院和全校总体情况两个角度出发,运用不同的机器学习方法分析其中隐藏的数据信息.结果显示,不同模型预测的准确率差异较大,其中LightGBM模型准确率达 98%以上,且AUC值为 0.811 6,说明该模型预测效果最佳.因此,将LightGBM模型应用于高校 2021 级学生学籍异动预测中,结果表明该模型可有效预测学生学籍异动,可为学校学籍管理提供辅助性决策意见.
Research on predicting student status changes based on machine learning methods:taking a local undergraduate university as an example
The article takes the academic performance of students in the 2018,2019,2020,and 2021 grades of local undergraduate colleges and universities as the research object.With different machine learning methods,the hidden data information is analyzed from two perspectives:the secondary college and the overall situation of the entire school.The results show that there is a significant difference in accuracy rate among different models.Through comparison,the LightGBM model has a relatively high accuracy rate of over 98%,and an AUC value of 0.811 6,indicating that the LightGBM model has the best predictive performance.Therefore,the lightGBM model is applied to the prediction of student status changes in universities for the 2021 grade.The prediction results indicate that the model can effectively predict student status changes,provide auxiliary decision-making advice for school academic management,improve teaching quality,and further promote the development and stability of the school.

local undergraduate colleges and universitiesmachine learningstudent status change

马建梅、旷开金

展开 >

龙岩学院 教务处,福建 龙岩 364012

福建江夏学院 金融学院,福建 福州 350108

地方本科院校 机器学习 学籍异动

福建省中青年教师教育科研项目

JAT200588

2024

河南工程学院学报(自然科学版)
河南工程学院

河南工程学院学报(自然科学版)

影响因子:0.26
ISSN:1674-330X
年,卷(期):2024.36(2)