首页|基于改进粒子群算法的智能微电网多目标调度

基于改进粒子群算法的智能微电网多目标调度

扫码查看
微电网优化调度是一个复杂问题,具有多个目标和非线性特征,仅以运行成本为目标的优化方法可能导致解决方案单一且运行环境受到影响.本文提出了一种经济、环保和创新的微电网调度模型,并对微电网中的微型燃气轮机、风力发电机、光伏发电、柴油发电机和电池等进行了详细的优化研究.构建了一种将运行成本和环境保护成本结合在一起的多目标模型.采用多目标粒子群优化算法(MOPSO)求解,以满足各种系统约束条件.该方法旨在确保微电网的运行在经济和环境方面都能取得最佳效果.这一模型提供了一个更全面和实用的框架,为微电网实现经济性和环境友好性的运行提供了重要指导.
Multi-objective Scheduling for Smart Microgrids Based on Particle Swarm Algorithm
Optimal scheduling of microgrids is a complex problem with multiple objectives and nonlinear characteristics,and optimization methods that aim purely at operating costs may lead to a single solution and difficulties in practical applications.In this paper,a novel microgrid scheduling model that combines economy and environmental friendliness is proposed,and a detailed optimal scheduling study is carried out for key components such as micro gas turbine,wind power,photovoltaic,diesel generator and storage battery.Based on ensuring the satisfaction of various system constraints,a multi-objective microgrid dispatch model that integrates the operating cost and pollution treatment cost is constructed and solved by using the multi-objective particle swarm optimization algorithm(MOPSO).This model provides a more comprehensive and practical framework,which provides a strong guideline for the economic and environmental-friendly

multi-objective schedulingpower system optimizationsmart microgridparticle swarm optimi-zation algorithm

杨文轩、李永坚、匡朝平、杨佳靓、贺敏霞

展开 >

湖南工程学院 电气与信息工程学院,湘潭 411100

湖南省双峰县青树坪镇农业综合服务中心,双峰 417701

多目标调度 电力系统优化 智能微电网 粒子群优化算法

湖南省自然科学基金

2020JJ6017

2024

湖南工程学院学报(自然科学版)
湖南工程学院

湖南工程学院学报(自然科学版)

影响因子:0.265
ISSN:1671-119X
年,卷(期):2024.34(1)
  • 29