首页|基于集成卷积神经网络的电力系统暂态主导失稳评估

基于集成卷积神经网络的电力系统暂态主导失稳评估

扫码查看
对于暂态失稳过程中电压失稳和功角失稳之间相互耦合,传统电力系统暂态稳定评估方法很难对两种失稳模式进行量化处理,从而无法合理选择相应的暂态稳定控制策略,针对这类问题,本文提出一种基于集成卷积神经网络的主导失稳评估的方法.该方法利用暂态能量函数法构建灵敏度指标,以系统主导性失稳状态作为神经网络的输出量.构造三组不同的卷积神经网络模型,通过选择输入特征进行训练优化模型.用该模型对IEEE-39节点算例进行仿真和分析,验证了该方法在发电机节点缺失的情况下有较高的鲁棒性.该模型的应用有利于提高电力系统的稳定性和安全性.
Dominant Assessment of Transient Instability in Power System Based on Integrated Convolutional Neural Networks
For the coupling between voltage instability and power angle instability during transient instability,traditional power system transient stability assessment methods find it difficult to quantify the two instability modes,thus making it difficult to reasonably select corresponding transient stability control strategies.This is a problem that needs to be addressed.This article proposes a method for dominant instability assessment based on integrated convolutional neural networks.This method utilizes the transient energy function method to con-struct sensitivity indicators,with the dominant unstable state of the system as the output of the neural net-work.Three different convolutional neural network models are constructed and the model by selecting input features for training is optimized.The simulation and analysis of the IEEE-39 node example by using this mod-el verifies that the method has high robustness in the absence of generator nodes.The application of this mod-el is beneficial for improving the stability and safety of the power system.

transient stability of power systemintegrated convolutional neural networktransient dominant in-stability

康思扬、韦肖燕、刘承峰、汤德威、唐勇奇

展开 >

湖南工程学院 电气与信息工程学院,湘潭 411104

电力系统暂态稳定 集成卷积神经网络 暂态主导失稳

2024

湖南工程学院学报(自然科学版)
湖南工程学院

湖南工程学院学报(自然科学版)

影响因子:0.265
ISSN:1671-119X
年,卷(期):2024.34(3)